Manoj Manivannan

15 Belgravia Mansions, Camberley, United Kingdom | **C:** +44 734 123 0742 <u>manojm18@live.in</u> | <u>https://manojmanivannan.github.io</u>

Professional Experience	Infovista Ltd UK March 2023 to Present Guildford, United Kingdom Data Analyst Engineer + Tech Lead - Data analytics & Gen Al Dev
	 Leading research & development of chatbot using Generative AI and LangGraph-LangChain framework. Led design, development, and integration of data adapters, analytic metrics/KPIs and aggregators in
	 Cloud native application to consume google protocol buffer SIP stream and provide business insights/reports on STIR/SHAKEN for telecom CSPs, generating sales of around \$2M in 18months. Troubleshooting and root cause analysis of data integrity failures on customer AWS clusters + create/modify CI/CD pipelines for development.
	 Data transformation troubleshooting on postgres and clichouse DB on AWS cluster. Scrum master since 2020 & Tech lead of Solution packages (Customer offerings) development.
	Infovista Italy S.R.L (formerly Empirix Italy S.R.L), Italy February 2018 to March 2023 Modena, Italy Data Analyst Engineer + Tech Lead - Data analytics & visualization
	Data Analytics & Optimization for Energy Applications Laboratory, October 2016 to October 2017 Politecnico di Milano, Piacenza, Italy October 2016 to October 2017
	Research Assistant – Machine learning, Smart meter Data analytics and Data Science
	 Data extraction from public dataset, Data Cleaning and analytics using Python:pandas. Developing a data-driven model to forecast the behaviour of HVAC systems with around 85% accuracy benefitting cost savings around 5% for energy providers serving smart grids. Time series analysis: Neural Networks, Regression
	ElektroThermalKinetics Pvt Ltd, April 2013 to June 2014 Chennai, India Engineer – Project Manager
	 Technical consultant, Design, & engineering of research equipment for combustion applications at IIT, Madras
Education	M.Sc. Energy Engineering (Renewables and Sustainability) September 2014 to October 2017 Politecnico di Milano, Piacenza, Italy
	 Energy systems, industrial heat & power technologies, Low carbon technology and renewables, Electric conversion of renewable energy sources using wind and solar power. Data analytics on Building Energy Management Systems dataset using pandas
	B.Sc. Mechanical Engineering June 2008 to August 2012 Anna University, Chennai, India June 2008 to August 2012
	 Computational Fluid Dynamics, HVAC systems for buildings, Finite Element Analysis
Skills	 Python (<i>Packages</i>: Scikit-learn, pandas, numpy, matplotlib, PyTorch) SQL (Postgres, Clickhouse) Shell scripting
	Operating System: Windows & Linux Experience with tools: Docker, Maven, <u>AWS</u> & Kubernetes, <u>GCP Basics</u> , <u>GCP Data Engineering</u> , <u>Apache</u> <u>Spark</u> & Airflow fundamentals.
Personal Projects	 Data Science: Data visualization & prediction on several data sets including COVID-19 & Bike sharing. Here . Basics of machine learning using <u>PyTorch</u> and deployment
	 Gained knowledge on CI/CD by developing from scratch, a cloud native application to track the International Space Station. Click + to check the Gitlab hosted project.

Academic Projects	 M.Sc. Thesis: Machine learning-based prediction of HVAC load by smart meter analytics Using open-source toolkits to build a model using NILM (Non-Intrusive Load monitoring) techniques and machine learning to estimate demand response by forecasting energy usage of HVAC systems using publicly available datasets. Perform data extraction, cleaning and transformation using pandas. Techniques and tools include Python, scikit-learn, especially neural networks, Random Forest decision tree and SVM. The aim is to reduce user utility costs without comprise of comfort. Enabling demand identification for the smart grid and reduction of primary energy source.
	 Energy & Environmental technologies for building systems Implementation of Residential Load Factor (RLF) method in Python ™ by using Openpyxl library for MS Excel database and employing the developed code for determining the heating & cooling loads of a small detached residential house using EnergyPlus® via OpenStudio™ to analyse the yearly energy consumptions of a multi-story commercial building with specific application & location. The analysis included different thermal zones, user defined construction sets and schedules. VAV with reheat HVAC system was incorporated for all thermal zones. A sensitivity analysis based on the effects of location, window properties and external wall characteristics was also performed.
	 IoT smart incubator In-house smart incubation unit with DS18B20 temperature sensor, LDR GL5516 photo resistor, 40W heating unit, ventilation, TowerPro SG90 servo motor connected to a Raspberry Pi 3 (GPIO) ports and coded using Python. On-demand ambient conditions maintenance with quick variability and 0.5°C sensitivity.
	 B.Sc. Thesis: Computer Aided Design of Heat Exchangers Developed a code using Microsoft® Visual Basic 8® for thermal & hydraulic sizing for a segmentally baffled shell and tube Heat exchanger. Generated a 3D Model using Autodesk® Inventor® from the output of the computed results from the code. Industrial and TEMA standards where obeyed and incorporated in the software.
Awards	 Winning Team of an innovation contest for international students from engineering and business backgrounds organised by ASTER in collaboration with ER.GO and launched by VERTIV (Emerson Network Power) at Research to Business 2017 (12th International Exhibition on Industrial Research and Competences for Innovation), Bologna, Italy. Secured €1000 reward for the most creative and feasible business strategy. Recipient of Gold scholarship (complete waiver) for the 2-year master's degree at Politecnico di Milano, Italy Event Manager in INGENIOUS' 12- A National Level Design Competition organized by the Society of Mechanical Engineers at Rajalakshmi Engineering College, Chennai, India.
Publication	Machine learning based short-term predictions of air-conditioner loads through smart meter analytics, Article: Energies Journal MDPI, 2017. Link to publication
Languages	 English – Professional proficiency Italian – Intermediate Tamil – Native speaker